Contextual conditioned fear blocks the induction but not the maintenance of lateral septal LTP in behaving mice.
نویسندگان
چکیده
High-frequency stimulation (HFS) of the fimbria induces long-term potentiation (LTP) in the lateral septum. This study was aimed at investigating the effect of contextual fear conditioning on septal LTP with the use of behaving C57 BL/6 mice as subjects. For the acquisition of contextual fear conditioning, animals were placed in a conditioning chamber, where they were subjected to footshocks (FSs, 0.6 mA); the following day (retention), animals were reexposed to the chamber. Animals from the first group received HFS in their home cages before being submitted to conditioning; animals from the second group were first submitted to conditioning before receiving HFS during reexposure to the conditioning chamber; animals from the third group were submitted to the same regimen as those from the second group, except that no FS was delivered in the conditioning chamber; and animals from the fourth group received FS in the conditioning chamber but were maintained in their home cages the day after for LTP induction. Before conditioning, animals from the first group, placed in a familiar context (home cage), displayed an LTP of the N3 wave of septal field potential. After conditioning, reexposure of these animals to the conditioning chamber produced a transient decrease in the amplitude of N3 but did not interfere with the duration of maintenance of LTP. Conversely, in animals from the second group, when HFS was applied during reexposure to the conditioning chamber the induction of LTP was totally blocked. However, mice from the two other groups (3rd and 4th) displayed normal levels of LTP. Taken together with previous findings, these data suggest that contextual conditioned fear may interfere with certain forms of learning via blockade of hippocampal-septal LTP.
منابع مشابه
Differential roles of mGlu(7) and mGlu(8) in amygdala-dependent behavior and physiology.
Glutamate transmission and synaptic plasticity in the amygdala are essential for the learning and expression of conditioned fear. Glutamate activates both ionotropic glutamate receptors and eight subtypes of metabotropic glutamate receptors (mGlu1-8). In the present study, we investigated the roles of mGlu7 and mGlu8 in amygdala-dependent behavior and synaptic plasticity. We show that ablation ...
متن کاملA pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning.
The AMPA receptor subunit glutamate receptor 1 (GluR1 or GluR-A) contributes to amygdala-dependent emotional learning. It remains unclear, however, to what extent different amygdala pathways depend on GluR1, or other AMPA receptor subunits, for proper synaptic transmission and plasticity, and whether GluR1-dependent long-term potentiation (LTP) is necessary for auditory and contextual fear cond...
متن کاملNitric Oxide Signaling Exerts Bidirectional Effects on Plasticity Inductions in Amygdala
It has been well known that long-term potentiation (LTP) of synaptic transmission in the lateral nucleus of the amygdala (LA) constitutes an essential cellular mechanism contributing to encoding of conditioned fear. Nitric oxide (NO), produced by activation of the postsynaptic N-methyl-D-aspartate receptors (NMDAR) in thalamic input to the LA, has been thought to promote LTP, contributing to th...
متن کاملActivation of group II metabotropic glutamate receptors induces depotentiation in amygdala slices and reduces fear-potentiated startle in rats.
There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces depotentiation in the LA. The induction of depotentiation is ...
متن کاملNeurabin Contributes to Hippocampal Long-Term Potentiation and Contextual Fear Memory
Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 78 1 شماره
صفحات -
تاریخ انتشار 1997